设为首页
收藏本站
请登录
立即注册
论坛首页
BBS
充值赞助
申请提现
提现排行榜
排行榜
Ranklist
友链申请
搜索
本版
文章
帖子
群组
用户
请
登录
后使用快捷导航
没有账号?
立即注册
友情链接
当前位置:
»
论坛首页
›
YOLO图像识别
›
前言资讯
›
人工智能再次现身健康领域 对癫痫发作进行自动分类 ...
收藏
0
回复
人工智能再次现身健康领域 对癫痫发作进行自动分类
IP属地:
香港
80
0
脆脆鲨
2023-9-21 22:15:09
|
显示全部楼层
|
阅读模式
【CNMO新闻】在美国,癫痫影响着数百万人的健康和生活,它通常是通过解读脑电图或测量头皮上的脑电活动来诊断的,但信号往往很长,这使得相关数据很难解释。
澳大利亚Edith Cowan大学的研究人员和孟加拉国Pabna科技大学联合提出一个解决方案,他们在新发表的论文中表示,可以利用人工智能系统,对癫痫发作自动进行分类。
在这项研究中,研究人员试图设计一种不会对准确性产生负面影响的数据预处理技术,他们表示该方法,会减少脑电图数据的大小和特征的数量,即性能优于一些先进的癫痫检测方法。
人工智能
该小组集中获取了基准脑电图数据,这些数据集包含100个独立通道,长度为23.6秒,每个通道共有4097个数据点,并从10名参与者(5名健康参与者和5名癫痫患者)中分离出信号。接下来,他们计算出最佳样本量,将脑电图分为不同的5.9秒段,再次对每段进行样本量估计,并对每段进行合并,然后应用算法提取15个不同的特征,每个信号提取60个特征。
然后,研究人员将数据集分为三类:健康组、间隔期(两次癫痫发作之间的时间)和癫痫发作组,并使用三种不同的对比方式进行分类。他们评估了癫痫分类和logistic模型树五种不同的机器学习算法,在测试中发现随机分类器的准确率最高,即使数据点的降幅高达30%,信心指数仍高达95%。
他们写道,实验结果表明,我们提出的采样技术和特征选择算法结合随机分类器可以有效地解决癫痫发作的分类问题。
还有一些类似的研究,例如MathWorks、美国国立卫生研究院(NINDS)和美国癫痫学会 ,在谷歌的Kaggle平台上赞助了一项竞赛,该竞赛要求参与者就癫痫发作患者的脑电图数据训练算法;IBM的科学家,在今年早些时候,也描述了一种快速且高度准确的人工智能辅助癫痫分类系统。
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
照妖镜
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
脆脆鲨
管理员
关注
4885
主题
0
粉丝
0
关注
这家伙很懒,什么都没留下!
OCR文字识别工具和文件整合包
2024-8-28
Topaz Video AI v3.4.4 人工智能视频画质增强和修复软件
2024-8-28
VITS_fast_finetune 语音模型一键训练整合包
2024-8-28
Stable Diffusion整合包v4.9发布!解压即用 防爆显存 三分钟入门AI绘画 ☆更新 ☆训练
2024-8-28
Yolo_v8轻量版全套工具及易模块和例子支持CPU CUDA10 11
2024-8-28
发新帖
24小时热帖
Topaz Video AI v3.4.4 人工智能视频画质增
2024-08-28
VITS_fast_finetune 语音模型一键训练整合
2024-08-28
Stable Diffusion整合包v4.9发布!解压即用
2024-08-28
Yolo_v8轻量版全套工具及易模块和例子支持C
2024-08-28
AI再显神通!将大脑信号转为语音 准确率最
2023-09-20
Copyright © 2001-2025
Discuz Team.
Powered by
Discuz!
X3.5
|
网站地图